Are Baseline and Modeling Supporting EA Follow-up for Hydroelectric Dams?

Carolyn Brown

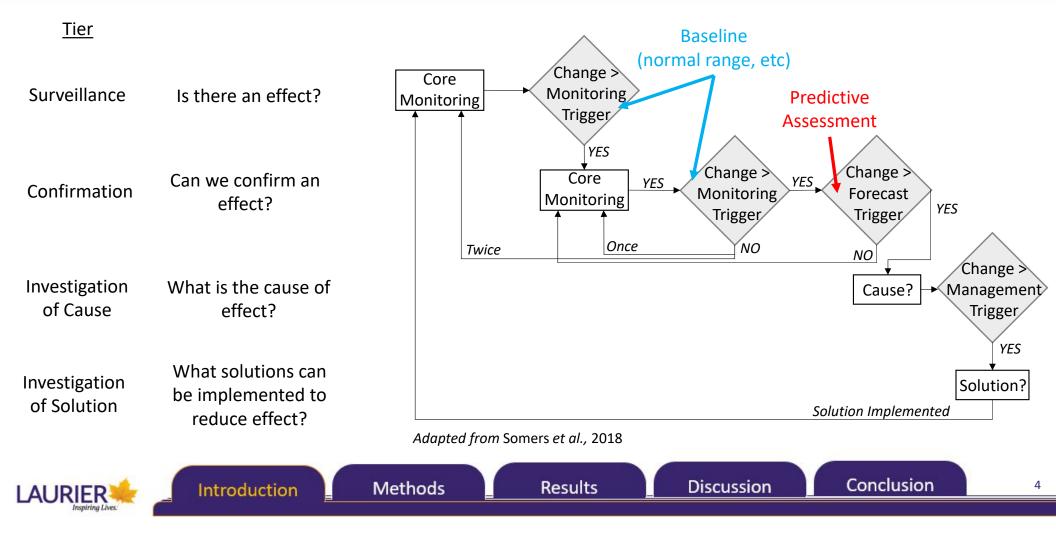
PhD Candidate, Wilfrid Laurier University Waterloo, Ontario, Canada

brow0470@mylaurier.ca

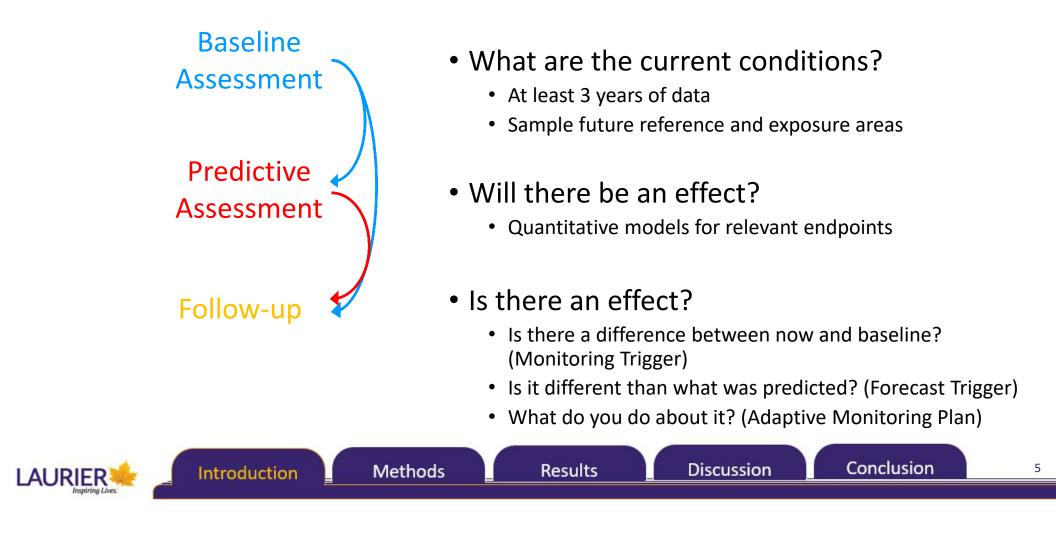
https://www.canadianriversinstitute.com/maes

Are Baseline and Modeling Supporting EA Follow-up for Hydroelectric Dams? (In Canada)

Carolyn Brown^a, Bram Noble^b, Kelly Munkittrick^c

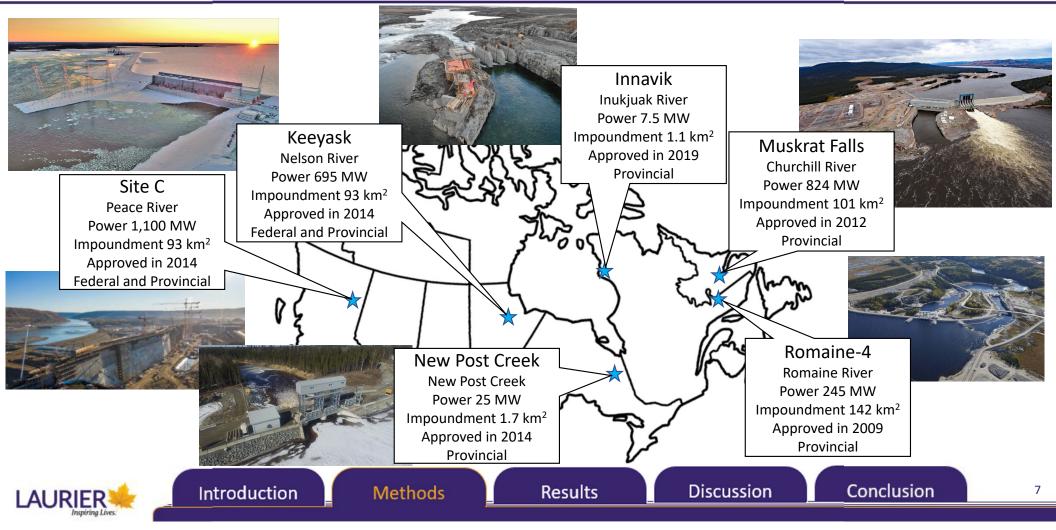

- a Wilfrid Laurier University, Ontario, Canada
- b University of Saskatchewan, Saskatchewan, Canada
- c University of Calgary, Alberta, Canada

Follow-Up Monitoring


- Is there an effect?
- Is the effect expected?
- What do you do about it?

Adaptive Monitoring Plan

Environmental Impact Assessment



Question

• Are baseline and modeling supporting follow-up monitoring for hydroelectric dams in Canada?

EIA Selection

Summary

I AURIER

- Baseline: Sampled in Reference and Exposure Areas
- Baseline: Sampled for at least 3 years in Exposure Area
- Predictive Assessment: Did Quantitative Model
- Follow-Up: Will Compare to Baseline

Introduction

- Follow-Up: Will Compare to Prediction
- Follow-Up: Have an Adaptive Monitoring Plan

Methods

Yes
No
?
Not Applicable

Conclusion

8

Discussion

Results

Summary

			Baseline		Predictive	Follow-up			
			Reference &	3 Years	Quantitative	Compare to	Compare to	Adaptive	
			Exposure	5 fears	Modelling	Baseline	Prediction	Plan	
	Site C 1,100 MW	Water Quality							
		Macroinvertebrates							13
		Fish Community							
	Muskrat Falls 824 MW	Water Quality							
		Macroinvertebrates							8
		Fish Community							
	Keeyask 695 MW	Water Quality							
		Macroinvertebrates							15
		Fish Community							
	Romaine-4 245 MW	Water Quality							
		Macroinvertebrates							5
		Fish Community							
	New Post Creek 25 MW	Water Quality							
		Macroinvertebrates							6
		Fish Community							
	Innavik 7.5 MW	Water Quality							
		Macroinvertebrates							2
		Fish Community							
LAUR		Introduction	M	lethods	Re	sults	Discuss	sion	Conclusion 9

Fulfilling Best Practices?

Baseline

- Assessment
- What are the current conditions?
 - At least 3 years of data
 - Sample future reference and exposure areas

Predictive Assessment

- Will there be an effect?
 - Quantitative models for relevant endpoints

Follow-up • Is there an effect?

- Is there a difference between now and baseline? (Monitoring Trigger)
- Is it different than what was predicted? (Forecast Trigger)
- What do you do about it? (Adaptive Monitoring Plan)

LAURIER Introduction Methods Results Discussion Conclusion 10

• Generally, Yes

- More to assess current effects
- More to determine sample size
- Develop monitoring trigger

• Generally, No

- Water Quality better than others
- Develop forecast triggers
- Generally, No
 - Most will compare to baseline
 - Most wont compare to predictions
 - Most don't have adaptive monitoring plan

Are Baseline and Modeling Supporting Follow-up Monitoring for Hydroelectric Dams in Canada?

- Large hydroelectric facilities such as Keeyask and Site C are doing more
 - More should be expected of smaller facilities
- There is often confusion in the role monitoring plays in adaptive management – the EA process needs to provide the information on which management decisions will be made
- Adaptive monitoring plans need to focus on providing that information monitoring and forecast triggers can drive an adaptive monitoring process but require good baseline data and a link to modeling predictions
- Consideration for what is needed during follow-up needs to start early in the EA process

Acknowledgments

https://www.canadianriversinstitute.com/maes

Picture Sources:

Site C - https://www.sitecproject.com/construction-activities/photo-and-video-gallery Keeyask - https://winnipeg.ctvnews.ca/power-starts-flowing-from-keeyask-generating-station-1.5314710 New Post Creek - https://kgsgroup.com/projects/peter-sutherland-sr-generating-station/ Innavik - https://www.crtconstruction.ca/en/realisations/94 Romaine-4 - https://aboriginalbusinessmagazine.com/?p=7049 Muskrat Falls - https://www.saltwire.com/nova-scotia/news/labrador-inuit-groups-say-methylmercury-monitoring-needscommunity-involvement-531088/

Let's continue the conversation!

Post questions and comments via chat in the IAIA22 platform.

Carolyn Brown

PhD Candidate, Wilfrid Laurier University Canada

brow0470@mylaurier.ca

https://www.canadianriversinstitute.com/maes

